From Barrel to Bar Glass

OBJECTIVE: To Attain The Perfect Draught Beer

Draught Beer is a food product

Draught beer needs to be carefully dispensed at retail.

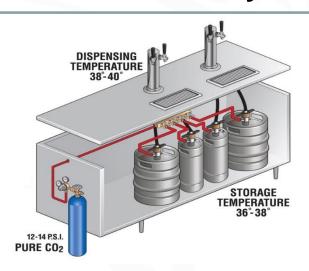
Each party plays a critical role in executing the perfect draught and delivering profitability

Components of all beer systems

To pour the best tasting and most profitable draught beer accounts should adhere to all components

- Beer Storage
- Dispense Equipment
- ✓ Tubing
- ✓ Pressure System
- Balancing
- Cleaning Procedure

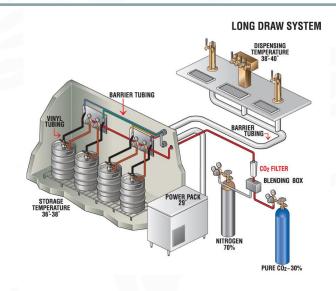
Remote Storage Systems Only


- Glycol Chiller
- Foam On Beer Detectors

TWO TYPES OF BEER SYSTEMS

Difference in system design is driven by proximity of keg storage to point of dispense

Short/Direct Draw System


Benefits

- Lower total cost
- Simpler Design
- Lower Maintenance
- Can be run on straight CO2

Tradeoffs

- Limited space to offer brands
- Limited backup storage
- Requires space in back bar area

Long/Remote System

Benefits

- Best for +6 taps
- Increase storage
- Better suited for higher volume

Tradeoffs

- Increased lining cleaning cost
- Requires additional equipment and maintenance
- Best used with blended gas

Beer Storage

Cooler is the central nervous system of your draught system. If things go wrong here, it's difficult to recover.

- Temperature in the cooler should ALWAYS be 36° – 38°. Measures should be taken to ensure this policy is followed. Warm draught beer can have a negative impact on profitability.
- To check temperature in cooler place glass filled with water inside the cooler and let come to temperature for 24hours then take temperature of water using calibrated thermometer.

Draught Beer Dispensing Equipment

Beer Faucets / Keg Couplers / Tail Pieces

- 304 Stainless Steel is optimal for draught beer contact
 - It is more durable and lasts longer
 - It has a more cleanable surface than chrome plated brass
 - It is less likely to allow grow bacteria
 - It provides a smoother more cleanable surface

Xtraflexmaster Beer Tubing

Xtraflexmaster tubing contains 5 layers of tubing

- Has a new ultra smooth copolymer inner layer that makes it difficult for bacteria to attach to the tube wall
- Its highly flexible and kink resistant
- Has an excellent oxygen barrier which starves bacteria of oxygen leading to improve hygiene
- Locks in in-brewed carbonation
- PVC, BPA, and plastizer free

Beer Pressure for Direct Draw

- Straight Co2 should be utilized with direct draw draught beer dispensers that refrigerate beer to 36* F, and require no more than 12-14 psi to dispense beer at a flow rate of 2 oz's per second
- These corresponding temperatures, pressures and flow rates maintain the natural in-brewed carbonation levels of the beer.
- Premixed Nitrogen/Co2 beer gas cylinders should not be utilized with direct draw draught beer dispensers

Beer Line Cleaning

Line Cleaning

- Regardless of draught volume, all beer lines need regular, bi-weekly cleaning
 - Follow proper safety procedures as directed by chemical manufacturer
- Ensures "fresh from the keg" taste
- Brewers Association Studies demonstrate proper line cleaning can increase overall beer sales
- To check line cleaning a line cleaning log should posted in a visible location near the cooler and checked periodically

Draught Beer Flow Rate

At 36* draught beer should pour in a laminar flow at 2 ounces a second

- A standard pint should fill in 8 seconds (time with an iPhone)
- If draught beer flows faster than 2 oz per second there is too much foam in the glass and beer/profits go down the drain.
- If draught beer flows slower than 2 oz per second there is too much beer in the glass leaving most of the profits in the glass.
- If the beer is pouring at 2 oz per second with the optimal CO₂ content and at the proper temperature, then you've achieved the proper flow rate!

ADDITIONAL REMOTE SYSTEM COMPONENTS

Due to increase distance between keg storage and point of dispense remote system require additional components

Glycol Power Pack

Barrier Tubing

Co2/Nitrogen Blenders

Foam on Beer Detectors

Glycol Power Packs

- It is recommended to install Power Packs on outside wall of walk-in cooler
- Avoid top of cooler or in an enclosed ceiling
- Ensure easy access for service
- Proper ventilation around and above Power Pack
- Glycol bath temperature should be between
 29° to 31°F
- Check the Procon pump and motor to ensure that the unit is circulating glycol to the beer tower and returning glycol to the unit.
- Clean condenser and service refrigeration every 6 months per manufacturer's recommendations
- Change glycol once every 12 to 18 months
- If glycol temperature on readout is above 34°F contact local refrigeration company for service

CO₂/Nitrogen Blender

- N2/CO₂ blenders maintain the highest quality and most profitable pours.
- Blenders provide the correct amount of CO₂ maintaining brewer's specified carbonation levels.
- If beer stops pouring check to ensure the both CO₂ and N2 storage are not empty or turned off.

UNDER CARBONATED

Barrier Tubing

- Has anultra smooth copolymer inner layer that makes it difficult for bacteria to attach to the tube wall
- Its highly flexible and kink resistant
- Has an excellent oxygen barrier which starves bacteria of oxygen leading to improve hygiene
- Locks in in-brewed carbonation
- PVC, BPA, and plastizer free
- NSF 51 and FDA Listed

Foam on Beer Detectors

Beer Savers

Beer Savers / Foam Control Detectors / FOB's

- For long draw / systems
- Keeps beer lines full when keg empties
- Saves on waste
- Less beer downtime on keg changes
- Prevents guests from being sprayed

Beer Savers/Foam	70 feet
Ounces of beer in beer line	52
16 oz. servings (1" head)	4
Waste cost (\$3 per serving)	\$12
# kegs to recoup equip. cost (\$61)	5

Draught Beer Profitability

16-OZ PINT	0" FOAM	1" FOAM
Servings/ 1/2 bbl	124	161
Ozs/serving	16	12.25
Cost/ 1/2 bbl*	\$115	\$115
Cost/oz	\$0.06	\$0.06
Price/serving	\$5.00	\$5.00
Kegs sold/year	100	100
Profit/keg	\$505	\$690
Profit/year	\$50,500	\$69,000
% Margin	81%	86%

^{*}Average Bud Light Cost/ 1/2 bbl

Draught Beer Profitability

*Average Bud Light Cost/ 1/2 bbl

16-OZ PINT	0" FOAM	1" FOAM
Servings/ 1/2 bbl	124	161
Ozs/serving	16	12.25
Cost/ 1/2 bbl*	\$115	\$115
Cost/oz	\$0.06	\$0.06
Price/serving	\$5.00	\$5.00
% Margin	81%	86%

What's in it for the Retailor?

When servers/bartenders properly pour Beer with 1" of Foam the you can expect to generate....

Incremental \$34,5Kof Profit

Incremental \$16.5K of Profit

Incremental \$345K of Profit

Ultimate Draught Checklist

INVENTORY

Sufficient keg inventoryKegs rotated properly and in code

COOLER/DRAUGHT SYSTEM

- ☐ Cooler temperature 36°F 38°F
- ☐ Clean and odor free
- ☐ Kegs separated from other food
- ☐ Gas supply sufficient and operating at proper P.S.I level
 - Beer lines and faucets cleaned every 2 weeks
- Power pack glycol maintained at 29°F

GLASSWARE

- ☐ Clean glassware sinks
- ☐ Brushes clean and in good condition
- ☐ Sufficient inventory of glass-cleaning solution and sanitizer
- ☐ Glasses "beer ready" and stored properly

PRESENTATION

- ☐ Beer served with a 1" head of foam
 - Beer served at 38°F 40°F
- Bar and service areas clean
- ☐ All taps and P.O.S. working properly

Make Your First Beer a Draught Beer

- (Call to Action) When On-Premise
 - Order a draught beer !!!!
 - -Taste it for Quality Assurance
 - Check to ensure the glassware is beer clean and odor free
 - Talk to the owner about the importance and frequency of line cleaning
 - Review the line cleaning log
 - Ask if there have been any quality complaints from consumers
 - Thank the Owner, GM, Staff

Perfect Draught Resources

Draught Troubleshooting

Wild/Foamy Beer

- Warm draught cooler
- Frozen glasses
- Beer line system not properly refrigerated
- Beer drawn improperly
- Faucets Broken

- Too much pressure
- Creeping gauges or increasing pressure
- Dirty faucets
- · Loose tavern head in barrel

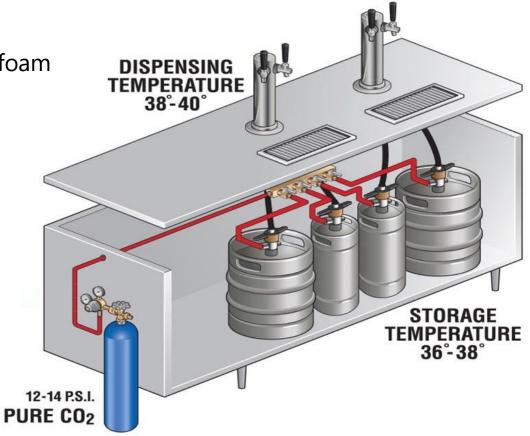
Flat Beer

- Cooler or dispensing system too cold
- Glasses are not "beer ready"
- Not enough CO2 pressure on barrel
- Sluggish (broken) pressure regulator
- Pressure required does not correspond to beer temperature

Cloudy Beer

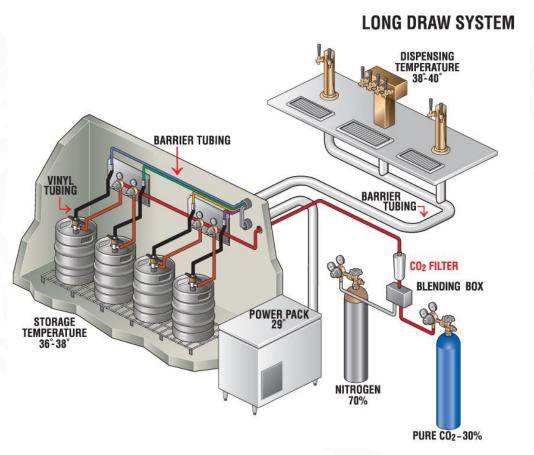
- Beer over chilled or frozen in dispensing system
- Beer has been frozen in barrel
- · Old Beer hose in poor condition
- · Beer lines not properly cleaned
- Contaminated pressure source

Off-Tasting Beer


- Air compressor used for pressure
- Sanitizer remains on glasses
- · Beer lines not properly cleaned
- Oily air; greasy kitchen air
- · Old draught, kegs not rotated

- Glasses not "beer ready"
- · Contaminated pressure source
- Dirty faucets
- Loose tavern head in barrel

Direct Draw Dispenser


- Replace beer lines with 3/16" I.D. Xtraflexmaster beer tubing
- Replace chrome plated brass faucets, keg couplers & tail pieces with 304 stainless steel components
- Cooler temperature should be set to constant 36-38*
- Utilize straight Co2 at 12-14 applied PSI
- Beer should pour at 2 ounces a second with a 1" collar of foam
- Ensure beer lines are cleaned on a bi-weekly basis

Long Draw Draught System

- Replace jumpers every other year
- Replace chrome plated brass faucets, keg couplers & tail pieces with 304 stainless steel components
- Ensure all gauges and pressure devices are in good condition
- Cooler temperature should be set to 36-38*
- Utilize the correct blend of C02/Nitrogen
- Beer should pour at 2 ounces a second with a 1" collar of foam
- Ensure beer lines are cleaned on a bi-weekly basis

